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An analytical solution is obtained for the axisymmetric problem of free concentrational convection in a 

vapor-gas mixture with isothermal evaporation of liquids from open cylindrical vessels. Formulas are derived 

to calculate concentration fields, local and integral mass fluxes of vapor. A comparative analysis of the 

results of  analytical and numerical simulation is carried out for the processes of the evaporation of  liquids 

under the conditions of convective mass transfer. 

During evaporation o f  liquids whose molar mass is smaller than that of the gas in whose medium the 

evaporation occurs, conditions can develop under which the hydrodynamic stability of the gas phase is disturbed. 

In this case, mass transfer of the vapor takes place in the free convection regime and is described by the system 

of equations [1 ]: 

- VPm + t/AV - pg = O, (1) 

v'Vpl - DAPl = 0 ,  (2) 

div v = 0,  (3) 

where Pro, P, v are the pressure, density, and velocity of the gas-vapor mixture; ~, D are the coefficients of the 

dynamic viscosity and diffusion; p 1 = m 1/V is the concentration of the vapor in the mixture. 

The steady-state evaporation regime in cylindrical vessels can be analyzed in the approximation Vr << vz 

(where Vr and Vz are the radial and axial velocity components), which is the more correct the smaller the radius of 

the vessel R in comparison with its height H. In this case we do not take into consideration the processes occurring 

in the adjoining layer of the vapor-gas mixture, whose thickness is negligibly small as compared with the dimensions 

of the vessel. For an axisymmetric variant of convection, which was studied by numerical methods in [2 ], in this 

approximation we can obtain an analytical solution to the system of Eqs. (1)-(3) which in cylindrical coordinates 

takes the form: 

- - + r /  - - + - - - -  - p g = 0 ,  
Oz Or 2 r Or 

V z - - - D  + - -  + - -  = 0  
[ - j 2  r O  r Oz 2 " 

The pressure and density of the mixture will be written as 

(4) 

(5) 

Pm = - PO gz + P ,  P = Po + P' , (6) 
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where P0 is the density of the mixture in the medium surrounding the vessel; p, p '  are the excess values of the 

pressure and density caused by the concentrational inhomogeneity of the mixture. 

Assuming the change in the pressure to be much smaller  than that in the molar mass of the mixture M ,  

we write p '  = p(1 - p o / p )  = (1 - M o / M  ),  just as in [2 ]. Using the expression for the molar mass of the mixture 

M = M1M2/ (COlM 2 + co2M1) , where co 1 = p l / p ,  0)2 = P 2 / P ,  M1 and 342 are the mass fractions and the molar masses 

of the components, we find 

p, (M2 - M1) (co01 - col) (7) 

= P  M1 + co01 (M2 - M1) " 

Substi tut ing express ions  (6)- (7)  into Eqs. (4)-(5)  and introducing the new concent ra t iona l  variable v/ = 

(col - co00/(cole - coOl) (C~ is the equilibrium mass fraction of the vapor), we obtain a system of equations in 

dimensionless cylindrical coordinates x = r / R  and y = z / R :  

_ O___ffF + --a2U -t- _1 __Ou + Ra g, = 0 ,  (8) 
Oy Ox 2 x Ox 

u a~ _ a 2 ~ +  1 a~/, + d2__~_~ = 0 (9) 

ay ax 2 x ax ay 2 ' 

where F and u are the dimensionless pressure and velocity; Ra is the Rayleigh number  defined by the expressions 

p R  2 R ctg R3 (10) 
F =  �9 u = v  z - ;  R a = P r G r ;  P r = v / D ;  G r -  2 ' 

p v D  ' D v 

here a -- (M2 - M1) (cole - r176 [M1 + r - M1) ], Pr  and Gr are the Prandt l  and Grashof numbers. 

Now we will seek the function v / in  the form: 

~p ( x ,  y) = 9o (x) - Ay  + B ,  (11) 

which allows us to transform system of Eqs. (8)-(9) in the following manner: 

02u + 1 0__~u + Ra 9o = 0 ,  (12) 

Ox 2 x Ox 

OF + Ra (Ay - B) = 0 ,  (13) 
Oy 

- Au = + Z (14) 
Ox 2 X OX 

Applying the Ax operation to Eq. (12) and using Eq. (14), we obtain a biharmonic equation for the velocity u: 

A2u - Ra Au = 0 .  (15) 

The solution satisfying the requirement for the existence of an adherent  layer at the side surface of the vessel and 

of the continuity equation, has the form: 

Io (kx) 10 (kx) ] 
u (x) = C J0 (k) 10 (k) ' k = 4X/'--R-a A .  

] 
After the substitution into Eq. (14), this equation makes it possible to find the function 9o(x): 

Ac [ Jo Io (k.) ] 
9O (x) = -~-  [ y0-~k~ + I0 (k) " (17) 

(16) 
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From the condition of impermeability of the vessel wails to vapor O~o/Oxl x = l  = 0 we find k = 4.6109, and from the 

solution of Eq. (16) we obtain A = k4/Ra = k4vD/agR 3, i.e., the lower limit of the range of critical values for the 

vapor concentration gradient O~//Oy corresponding to the instant of the disruption of the hydrodynamic stability 

and to the transition to the axisymmetric variant of free-convective mass transfer. It is evident that the expression, 

which determines the critical value of the vapor concentration gradient A, agrees in every respect with the physical 

meaning of the phenomenon under  consideration. The transition to the convective regime of transfer will occur the 

more readily, the lower the viscosity of the mixture and the diffusion coefficient of the vapor and the larger the 

vessel radius and the difference between the molar masses of the vapor and gas. 

In order  to find the two unknown constants B and C, we will use the following boundary conditions: a) in 

a descending flow the minimum value of the vapor concentration in the outlet cross section of the vessel corresponds 

to the concentration in the surrounding medium, i.e., p l (1 ,h)  =P01 or ~(1,h) = 0, where h = H/R is the relative 

height of the vessel; b) at the central point of the lower cross section of the vessel the vapor concentration differs 

but slightly from the equilibrium one, i.e., p 1 (0,0) = p I e or ~0 (0, 0) = 1. Using Eq. (11), these conditions permit us 

to obtain the constants in the form: 

A h -  1 (18) 
B = 1 - rI1CA , C - A Q]2 -/ ' ]1) ' 

where ~/1 = [1/Jo(k) + 1/Io(k) l~ k2 -- -0 .1579;  ~72 = 2/k z = 0.0941. 

We will describe the convection-induced enhancement of the evaporation process by the convective Nusselt 

number  Nu = <]c > /<]d >, which represents the ratio of the vessel cross-sectional area-average mass fluxes of vapor 

during evaporation under  the conditions of free convection and convective diffusion. The mean and local mass fluxes 

are determined by the expressions: 

( j ~ ) =  1 R 
- -  f j (r, z) 2arrdr, (19) 
~R 2 0 

0/91 
j=  - D-~z + PlVz �9 (20) 

The latter can be written as 

J = - R - ( c o l e - c o 0 1 )  - ~ - y  + u  / p +  
C~ - co01 

Having substituted this expression into Eq. (19) and performed integration with the use of [3 ], we obtain a formula 

for the mean flux of vapor <jc > in the convective mass transfer  regime: 

(jc) pDA [ C 2 [ d ~ ( k )  q ( k ) l  t (22) 
= - -  ( co l e -  ~ 1 + + 

or 

= E ( 1 ) 2 ]  (Jc) pDA(COle-CO01) 1 + f l  h - ~  
R 

where/3 = [JZ(k)/j2(k) + 12(k)/12(k)]/[kZ(r/2 - ~/1) ] = 0.2914. 

A solution of the problem for the conditions of convective-diffusive transfer is known [4 ]; in the variables 

used in the present work it has the form: 

pD 1 - -  COO1 (24) 
(Ja) = ~-~ln 1 - col-------~ 

Then,  for the Nusselt number  with account for Eq. (10) we find 

:343 



Nu 
b" 

z/. 

2 

0 

E 

2 q 6 8 fl/R 

<L > - 

7 
0.121 ~,~, 
O.08[- 

t , .  5" 

I l l fr - 7 
O 2. zt- 6 fl H/R 

Fig. 1. Nusselt numbers as functions of the relative height of a cylindrical 

vessel. Values of the Grashof numbers: 1) 2. 103; 2) 4-103; 3) 6. 103; 4) 

8- 103; 5) 104; 6) 104 (according to [2 ]). 

Fig. 2. Dimensionless mass fluxes of vapor as functions of the relative height 

of a cylindrical vessel. Values of the Grashof numbers: 1) 2. 103; 2) 4. 103; 3) 

6,. 103; 4) 8" 103; 5) 104; 6) 104 (according to [2 ]). Curve 7, fluxes in the case 

of convective-diffusiv6 mechanism of transfer. 

Nu; k--' II+ lh-Ral21 -Z ' ( 2 5 )  

where e = (O31e - o301)/ln [(1 - w 0 1 ) / ( l  - Ogle ) ]. 

To compare with the well-known data, it is advisable to perform calculations for the water-air system 

considered in [2 ]. The  authors of that work analyzed the evaporation of water at a temperature of 311 K, for which 

~Ole = 0.04, assuming the air to be dry, i.e., w01 = 0. For the indicated temperature the dynamic viscosity of the air 

is ~/= 1.89-10 -5 Pa .sec  [5 ]. Using the state equatiorrfor calculating the density, we obtain p = 1.121 kg/m 3 and, 

correspondingly, v = 1.684-10 -5 m2/sec. The coefficient of the diffusion of steam to the air is D = 2.88- 10 -5  mX/sec 

[6 ]. This gives Pr  = 0.585. 

The functions Nu(h) for different values of the Grashof number  given in Fig. 1 indicate that the proposed 

calculational technique permits one to elucidate all the main features of mass t ransfer  during the onset of free 

convection in a gas-vapor mixture. The Nusselt number increases with an increase in Gr, i.e., mass transfer 

enhancement occurs with an increase of both the vessel radius and the difference in the mass fractions ~Ole-cOol. 

In particular, for h = 5 at Gr  = 104 the free convection vaporization rate of water can increase by more than a factor 

of 7. However, according to the definition of the Grashof number (Eq. (10)), this increase is possible only for 

vessels whose radius R > 2.26.10 -2 m. In the region of the existence of convective transfer the functions Nu (h) 

are extremal. The  critical value of the relative height hcr= Ra /k  4 (determined from the condition u -- 0), above 

which the convective mixing of the gas-vapor mixture ceases, increases monotonically with an increase in Gr. When 

Gr < 4.103, the gas-vapor mixture remains stable at any value of the relative height of the vessel. 

The  values of h at which Nu becomes smaller than unity in the left portion of Fig. 1 cannot be considered 

critical for the following reasons. The  calculations of the fluxes <jc > and <jd > that determine the value of Nu are 

performed for ~e = 0.04 and ~0 = 0, just as in [2 ]. But while for convective transfer  the condition ~0 = 0 is correct 

at any value of h (for a dry  air), then for transfer in the convective diffusion regime this means that a zero vapor 

concentration must be sustained at all the points of the outlet cross section of the vessel. Obviously, its experimental 

realization is the more difficult, the smaller the value of h. Figure 2 illustrates the effect of h on the dimensionless 

mass fluxes < i >  = <j>R/pD for the convective (curves 1-5) and convective-diffusive, Eq. (7), mechanisms of 
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transfer whose ratio also gives the value of the Nusselt number and permits one to get a more clear idea of the 

practical realization of the calculated functions Nu(h) in the region of small values of h. In real conditions for vessels 

open at the top formula (22) is inapplicable for the calculation of <jd > at small  va lues  of h, since 

<Jd (h ~ 0)> ~ oo, and, consequently, there is no rapid increase in the flux <id>, as shown in Fig. 2, and it does 

not exceed the values of the convective flux <ic>. 

Figures 1 and 2 also present curves plotted from the results of numerical simulation of free convection [2 ] 
at Gr = 10 4. The satisfactory agreement of the results indicates the correctness of the analytical model considered 

in the present work. Its obvious advantage is the possibility to obtain simple calculating formulas permitting one to 

evaluate the mass transfer enhancement degree during vaporization by free concentrational convection. It should 

be noted that the numerical model developed in [2 ], does not provide the possibility of determining the critical 
values of the relative vessel heights h, above which no disruption of the mechanical stability of a gas-vapor mixture 

occurs. The proposed solution provides the possibility of such an estimation and can be used in selecting the optimal 

dimensions of an experimental cell for determining the diffusion coefficients of liquid vapors in gases by the Stefan 

method. 

N O T A T I O N  

p, pressure, Pa; p, density, kg/m3; v, velocity, m/see; 7/, v, dynamic and kinematic viscosity, Pa-sec, 

mX/sec; D, diffusion coefficient, ma/sec; COl, w2, mass fractions of vapor and gas in a mixture; g, free fall 

acceleration, m/see2; M1, M2, molar masses of vapor and gas, kg/kmole; Vr, Vz, radial and axial components of the 

velocity of a gas-vapor mixture, m/see; r, z, cylindrical coordinates, m; R, H, radius and height of vessel, m; j, 
local mass flux of vapor, kg/(m 2. sec); <j>,  vessel cross-sectional area-averaged mass flux of vapor, kg/(m 2. sec); 

< i> ,  vessel cross-sectional area-averaged mass flux. 
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